

Region IV Wildlifer

A newsletter for landowners that fall within the 33 counties of Region IV, covering portions of Central and Coastal Texas

January 2026

Page 4

The Invasion of King Ranch
Bluestem

Page 8

Javelina: The Newest Boone
and Crockett Category

Page 10

Smaller Prairie Restoration

Page 14

Texas Wildlife Association
Historical Article: Where
Have All The Cowboys
Gone?

Page 21

Texas Coastal Goose Survey
Summary-January 2026

Page 28

Upcoming Events

Page 30

Our Wildlife Biologists

District 8 Field Notes

BY DERRICK WOLTER

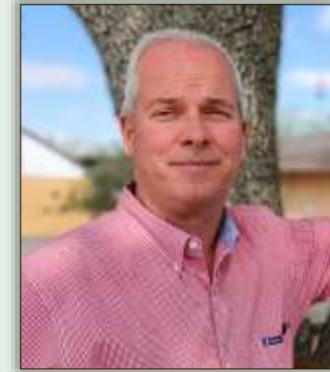
Howdy! As we start a new year, I can't help but ponder the prior one. From a rainfall perspective, last year looked very different across the district. The northern half of the district experienced a favorable growing season, while the southern half was dry, creating a wide range of habitat conditions for wildlife. Fall and winter have since trended dry and mild across the district, which has influenced deer movement and visibility for hunters. As a result, deer observations and harvest numbers appear to be lower than normal. This likely reflects changes in weather patterns rather than population health. We will have a clearer understanding of deer harvest once the entirety of harvest data are received and reviewed.

Over the past several months, staff have been involved in "standard deer season activities." In addition to trying to put a little venison in the freezer ourselves, staff have worked closely with hunters to collect age and antler information from harvested deer, performed Chronic Wasting Disease (CWD) monitoring to help safeguard herd health, and hosted public scoping meetings in southern district counties to hear directly from residents about potential changes to antlerless harvest regulations. All these efforts help ensure deer management decisions are informed by sound science, responsive to local input, and focused on the long-term health of deer populations.

In December, district staff completed our annual physical fitness testing and annual fire refresher course to ensure all are trained, capable, and ready to effectively use prescribed fire. These preparations strengthen operational readiness while reinforcing safety, coordination, and best practices. When applied under appropriate conditions, cool season fire is a valuable habitat management tool that maintains open habitat, promotes the growth of native grasses and forbs, and improves forage quality for livestock and wildlife.

Derrick Wolter began his career with TPWD in 2000 working as a wildlife biologist within the Upper Coast Wetlands Ecosystem Project, where he worked with wetlands, waterfowl, and on several Wildlife Management Areas. In 2004, Derrick moved to Central Texas to serve as a district biologist for Bell, Coryell, Lampasas, and Williamson Counties. In 2020, he became the Senior Wildlife Biologist for the Hill Country District. In November 2023, Derrick became the Wildlife District 8 Leader. He received a Bachelor of Science in Wildlife Science and a Master of Science in Wildlife Ecology from Texas A&M University.

Continued on page 2


District Field Notes, continued

Lastly, and fortunately, there have been no staff changes in the district. The team remains committed to continued professional growth and looks forward to expanding their expertise in the year ahead. As always, please reach out to staff with any questions or requests for assistance related to land and wildlife management. Your friendly neighborhood biologist is always ready to help. From us to you, have a great 2026!

District 9 Field Notes

BY BOBBY EICHLER

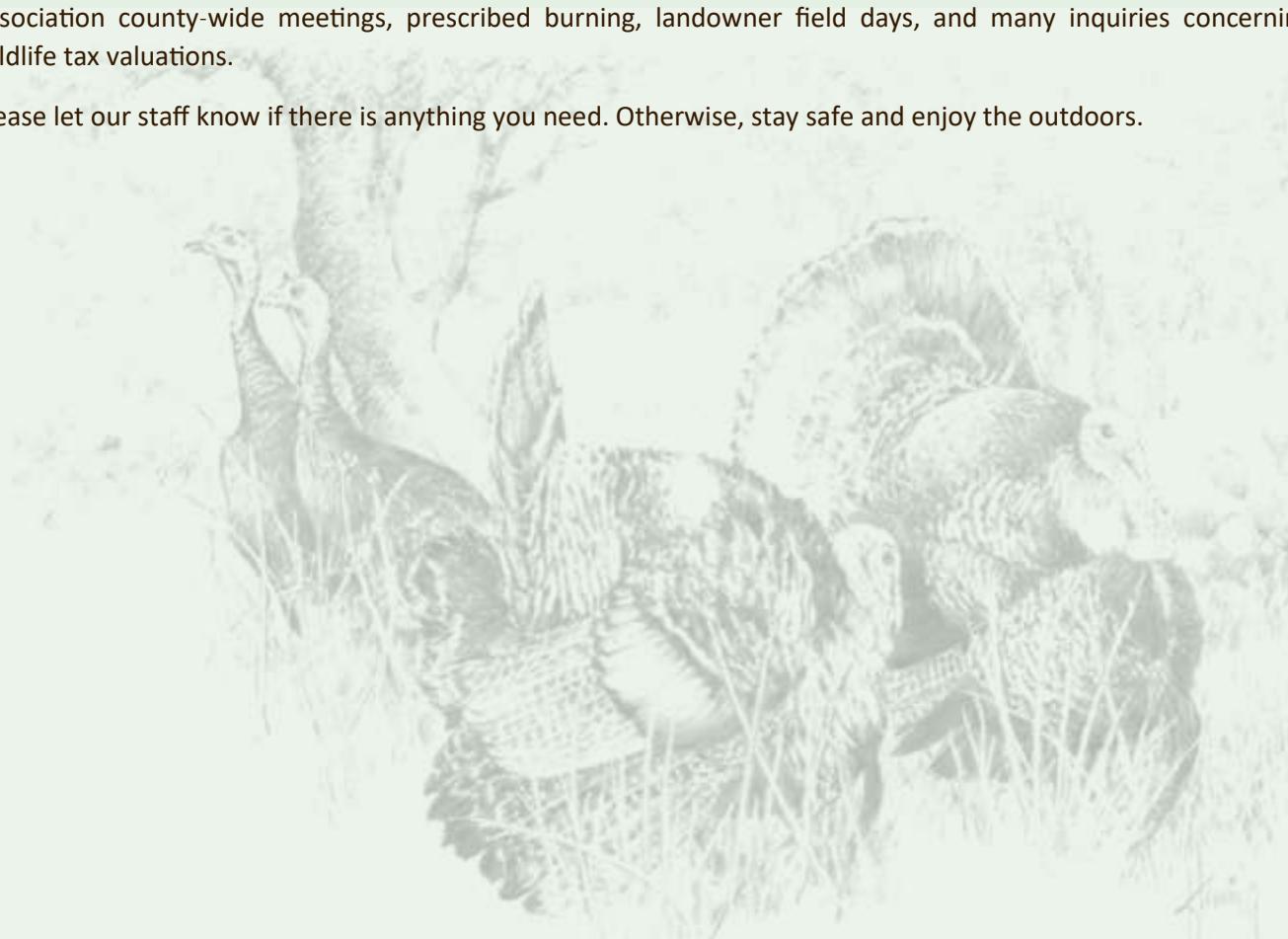
I hope this District 9 update finds you well and that everyone enjoyed the holidays. If a person likes warm winters, you should be happy so far this year. To date we have had very few frosts, even less freezing weather, and virtually no rain. Conditions are lining up for a dry spring, with the drought worsening. Let's pray for some relief this spring or this summer may be less than optimal.

With the above conditions being characteristic throughout the hunting seasons, harvest was likely affected for almost any species you hunted. Deer season seemed to just sneak by with the rut mainly trickling with no pronounced peak, I would say. While breeding happens regardless, much of it during these warm seasons occurs at night and on the handful of days when the weather is cooler. On top of this, the acorn crop was probably average to above average, but with little precipitation acorns are still abundant across parts of the district. These factors likely resulted in below average harvest of whitetails across the district. While harvest was likely lower than normal, there have been some high quality bucks harvested.

Waterfowl season has also been affected by the warm winter. Duck hunters have had a tough year. Warm weather means less than ideal hunting when it comes to waterfowl. While goose population numbers are still below the long-term average, goose hunters on the Texas coast have had some luck where birds are feeding. The simple fact is waterfowl are migratory, and they migrate when their food sources become limited by the weather up north, and as this occurs migratory birds move south. Food sources become unavailable by freezing weather and ice; if freezing weather does not happen, food sources stay available and there is no reason to use energy to fly south. Would you go to the grocery store every day if your pantry and refrigerator was always full?

On the above subject, lack of waterfowl and hard hunting. There has been a letter sent to the United States Fish and Wildlife Service to push for a study on how flooding standing agricultural crops in the northern states may be limiting the number of waterfowl that fly south for the winter. This same letter discusses the Migratory Bird Treaty Reform Act of 1998. This act was meant to clarify what constitutes baiting and crop manipulation and basically did not change the definition or legality of either from the previous rule. Before jumping into this topic headfirst, please educate yourself on the past rules and make sure to get your information from credible sources. As with any subject nowadays, there is plenty of rhetoric out there to lead you astray, regardless of what side you may take.

Continued on page 3


District Field Notes, continued

As far as what has been keeping staff busy. As always, the deer hunting season, regardless of harvest keeps our staff busy. Several public hunts have occurred at various state parks and wildlife management areas and our staff put in quite a few hours with public hunts. Additionally, collecting CWD samples from constituents keeps our phones ringing. To date, across District 9 we have collected CWD samples on 371 hunter harvest and 480 roadkill. We have also collected samples from across the state that fall in other districts. On a statewide basis, approximately 10,500 deer have been sampled this season.

Staff have also been busy hosting scoping meetings across the district concerning the possibility of expanding antlerless hunting (doe-days) from the current 4 days to 16. Once you receive this newsletter, District 9 will have completed 8 scoping meetings. Overall turnout has been relatively low at the meetings, but survey results to date have shown approximately 75% in favor of expansion. The Texas Parks and Wildlife Commission will be briefed on the results later in January, and at this time they will make a decision as to whether to move forward with putting the regulation proposal into the Texas Register. A final vote on the matter will then take place in March, and if approved, the doe-day expansion will start during the 2026-27 season.

Going forward, late winter early spring, staff will stay busy assisting with local Wildlife Management Association county-wide meetings, prescribed burning, landowner field days, and many inquiries concerning wildlife tax valuations.

Please let our staff know if there is anything you need. Otherwise, stay safe and enjoy the outdoors.

Bobby Eichler is the District 9 Leader for the Oak Savannah and Prairies District. He has Bachelor and Master of Science degrees in Forestry both with emphasis in Game Management, from Stephen F. Austin State University. A native of Giddings, Bobby started his TPWD career in East Texas before moving to La Grange in 2007.

The Invasion of King Ranch Bluestem

WRITTEN BY AUDREY NAUGHTON

King Ranch bluestem (*Bothriochloa ischaemum*), commonly referred to as KR bluestem or yellow bluestem, is a nonnative, warm-season grass that has become one of the most widespread and problematic invasive species in Texas. It belongs to a group of grasses known as Old World Bluestems (OWBs), which originated across Europe, Asia, and Africa, and were introduced to North America in the early 1900s. At first glance, OWBs may appear to be beneficial plants. They are highly drought-resistant, have a deep root system that stabilizes soil, and are readily grazed by cattle. However, these same traits contribute to their aggressive spread and dominance over native plant communities. Once established, the grasses form monocultures that crowd out native plants, reducing the diversity of grasses and wildflowers (forbs) that support insects, birds, and other wildlife.

King Ranch bluestem was first recorded as an accidental introduction to the United States from China in the early 1900s. It was initially observed in Texas on the King Ranch in Nueces County by a Soil Conservation Service agronomist, which is how it earned its common name. The grass was later sent to a nursery in San Antonio for evaluation, where researchers studied its production potential and commercial viability. Once it was discovered that KR bluestem could withstand heavy grazing and thrive in harsh conditions, it was sold as an improved pasture grass.

Over time, however, other non-native grasses such as bermudagrass (*Cynodon dactylon*), kleingrass (*Panicum coloratum*), and Johnsongrass (*Sorghum halepense*) became more popular among ranchers due to their higher palatability and forage value. As a result, KR bluestem is often underutilized by cattle and tends to spread beyond pasture boundaries, contributing to its invasive behavior across Texas rangelands.

KR bluestem is highly effective at colonizing disturbed areas such as roadsides, oil pads, livestock working zones, and residential developments, where its seeds are easily spread by wind, vehicles, animals, and equipment, enabling rapid expansion across the landscape. Once established, it is extremely difficult to remove due to its deep root system and competitive growth. As a warm-season grass, it is highly efficient at photosynthesis in hot, dry conditions, giving it a distinct advantage over many native species, particularly during drought.

The spread of KR bluestem and other OWBs poses an issue for Texas' wildlife. Historically, Texas had extensive prairies. Today, less than 1% of those original native prairies remain. The loss is due to a combination of factors, including urban development, agriculture, energy production, and the spread of invasive species like KR bluestem. As native plant diversity declines, so too does the abundance of insects, which serve as a critical food source for many bird species. This chain reaction affects entire food webs, leading to population declines in grassland birds, wild turkeys, pollinators, and other wildlife that depend on native prairie ecosystems.

Identification

KR bluestem can be identified by its yellow-green leaves, narrow brush-like seed head with purple or reddish tones at maturity, and its tendency to form dense monocultures. It is often mistaken for native grasses such as little bluestem (*Schizachyrium scoparium*) or hooded windmill grass (*Chloris cucullata*) due to similarities in growth

Continued on page 5

The Invasion of King Ranch Bluestem, continued

King Ranch Bluestem <ul style="list-style-type: none"> Non-native invasive that is rarely preferred by wildlife and cattle Forms monocultures and outcompetes native grasses Yellow green leaves and stems Narrow, brush-like seed head with purple or reddish tones at maturity 	Little Bluestem <ul style="list-style-type: none"> Native, and preferred by wildlife and cattle Grows in dense bunches Fluffy, white seed tufts in late summer and fall Blue-green leaves during growing season Turns reddish bronze in the fall 	Hooded Windmill Grass <ul style="list-style-type: none"> Native and preferred by wildlife and cattle Grows in small upright clumps Seed head resembles a windmill or umbrella with 5 to 20 slender, radiating branches Each branch has hooded spikelets, giving the seed head a textured appearance
---	--	--

Figure 1: Comparison chart of the characteristics of King Ranch bluestem and the native plants (little bluestem and hooded windmill grass) that are commonly misidentified as King Ranch bluestem. Photo credit: Texas A&M AgriLife Extension (KR bluestem), LBJ Wildflower Center – Sally and Andy Wasowski (little bluestem), Cullom Simpson (hooded windmill grass)

form and seed head structure. However, these native species have distinct identifying features that set them apart from KR bluestem (see Figure 1). Texas is home to at least 21 native bluestem species, many of which are beneficial to wildlife. In fact, native grasses are often preferred by cattle over OWBs due to their superior nutritional value and palatability.

There are currently six species of non-native OWBs found in Texas, all of which pose similar ecological threats. These include King Ranch bluestem (*Bothriochloa ischaemum*), Kleberg bluestem (*Dichanthium annulatum*), angleton bluestem (*Dichanthium aristatum*), caucasian bluestem (*Bothriochloa bladhii*), silky bluestem (*Dichanthium sericeum*), and pitted bluestem (*Bothriochloa pertusa*).

Continued on page 6

The Invasion of King Ranch Bluestem, continued

Their ability to thrive in poor soils, tolerate drought, and recover quickly from disturbance makes them highly competitive in rangelands and prairie systems. Unfortunately, these same traits also make them invasive and difficult to manage.

Management and Control Strategies

Eradicating KR bluestem is a complex and often long-term endeavor. Because of its widespread distribution and aggressive growth, complete removal is rarely feasible. However, research and field experience suggest that the most effective approach involves integrated management, combining multiple techniques tailored to the specific site conditions.

In areas where KR bluestem has already formed a monoculture, the best strategy is often a full grassland restoration. This process begins with applying a glyphosate-based herbicide to suppress the plant community. Next, plowing or disking the soil to disrupt the root system and expose the seed bank, likely followed by additional herbicide applications. Finally, the area is reseeded with a diverse mix of native grasses and forbs, which can begin to reestablish a healthy plant community and compete with any remaining KR bluestem.

Prescribed fire is another valuable tool, but its effectiveness depends heavily on timing. Dormant season burns, typically conducted in winter, have been shown to increase KR bluestem abundance, as the plant is well-adapted to fire and quickly rebounds. In contrast, growing season burns, conducted in late spring or summer, can significantly reduce KR bluestem cover and create opportunities for native species to recolonize.

Mowing also has variable effects. When done early in the growing season, mowing can stimulate KR bluestem growth, mimicking the effects of grazing. However, late season mowing, especially when combined with herbicide application or fire, can help reduce its dominance. It's important to note that mowing alone is rarely effective and may inadvertently harm native plants if not carefully timed.

Plowing and disking, while useful in some contexts, can also lead to rapid regrowth if not followed by herbicide treatment and reseeding. KR bluestem seeds are often present in the soil and can quickly germinate after disturbance. Therefore, these mechanical methods should always be part of a broader restoration plan.

In areas where native plant diversity is still relatively intact, land managers should avoid excessive disturbance and instead focus on early detection and rapid response. Spot-treating small patches of KR bluestem with herbicide can prevent larger infestations from taking hold. Prioritizing management in high-risk areas, such as roadsides, fence lines, and equipment yards, can also help slow the spread.

Public education and outreach are essential components of any successful management strategy. Landowners, ranchers, and conservation professionals must work together to recognize the signs of KR Bluestem invasion and implement best practices for control. By promoting the use of native grasses and reducing the spread of invasive species, we can begin to restore the ecological integrity of Texas's remaining grasslands.

Continued on page 7

The Invasion of King Ranch Bluestem, continued

KR bluestem may have been introduced with good intentions, but its long-term impact on Texas' ecosystems has been overwhelmingly negative. As it continues to spread across the state, it threatens not only plant diversity but also the wildlife and cultural heritage tied to native prairies. Through a combination of science-based management, community engagement, and restoration efforts, we can begin to push back against this invasive species and protect what remains of Texas's iconic grasslands.

References:

Dee, J. R., Thomas, S. M., Thompson, S. D., Palmer, M. W., and Fraser, L. "Long-Term Late Season Mowing Maintains Diversity in Southern US Tallgrass Prairie Invaded by Bothriochloa ischaemum." Applied Vegetation Science, vol. 19, no. 3, 2016, pp. 442–453. <https://doi.org/10.1111/avsc.12227>.

Foster, Jamie L., Clayton, Megan K., Lesak, Meagan M., McCuistion, Kimberly, and Teinert, Trent. "Combining Management Techniques for Short-Term Reduction of Introduced Old World Bluestems in South Texas Rangelands." Rangeland Ecology and Management, vol. 99, no. 1, 2025, pp. 50–57. <https://doi.org/10.1016/j.rama.2024.12.001>.

Reemts, Charlotte M., Picinich, C., and Greene, T. A. "Late-Summer Fire Provides Long-Term Control of the Invasive Old World Bluestem (Bothriochloa ischaemum)." Southeastern Naturalist, vol. 20, no. 4, 2021, pp. 589–601. <https://www.jstor.org/stable/48692170>.

Wied, J. P., Perotto-Baldivieso, H. L., Conkey, A. A. T., Brennan, L. A., and Mata, J. M. "Invasive Grasses in South Texas Rangelands: Historical Perspectives and Future Directions." Invasive Plant Science and Management, vol. 13, no. 2, 2020, pp. 41–58. <https://doi.org/10.1017/inp.2020.11>.

Audrey Naughton is the District Wildlife Biologist for Karnes and Wilson counties. She earned her degree in Biology from the University of North Texas in 2020. Following graduation, Audrey gained hands-on experience across the United States, conducting ecological research, performing environmental surveys for oil and gas projects, and learning land management techniques, including prescribed fire and herbicide application. Audrey is passionate about conserving Texas's natural resources and enjoys working directly with landowners to help them achieve their habitat and wildlife management goals. Her diverse background and commitment to stewardship make her a valuable resource for conservation efforts in South Texas.

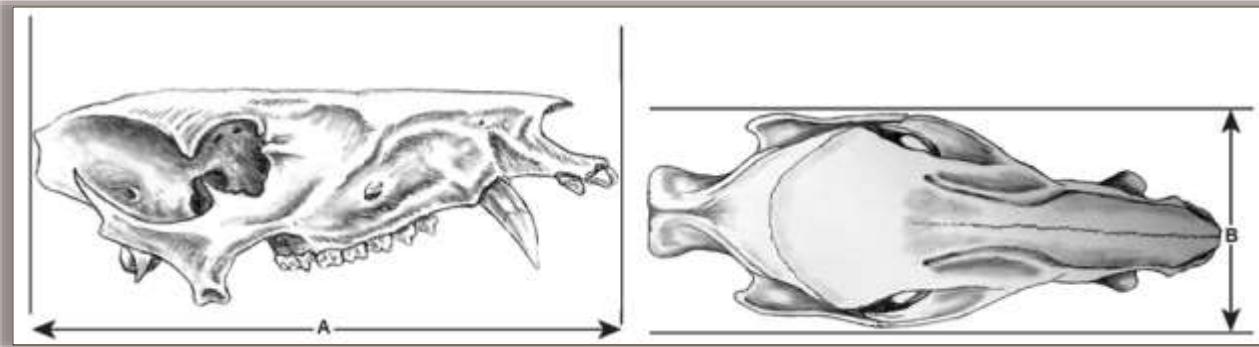
Javelina: The Newest Boone and Crockett Category

WRITTEN BY ROBERT CONRAD

In December of 2024, the Boone and Crockett and Pope and Young Clubs added javelina (*Pecari tajacu*) as their newest trophy categories. While the Texas Big Game Awards has already had the category, it is now recognized at the highest level. This proposal came from a working group featuring representation from Arizona, New Mexico, Texas, and Mexico.

Scoring for javelina will follow the same guidelines as bears, cougars, and jaguars. The greatest length of the skull without the lower jaw ("A" in the picture below) will be added to the greatest width of the skull ("B" in the picture below). Minimum scores differ between the clubs, with Boone and Crockett requiring a minimum score of 14 and 5/16 inches, and Pope and Young requiring 13 and 14/16 inches. While many people like to look at canine teeth, these are not considered in the score of the skull. Instead, these are used as identifying characteristics to differentiate between individual skulls.

If you want to have your javelina scored, keep the following in mind: official measurements cannot be taken until the skull has air dried at a habitable room temperature for at least 60 days after the animal was killed. All adhering flesh, membrane, and cartilage must be completely removed before official measurements are taken.


If you harvest a big game animal and would like to have it scored, contact your local biologist, or visit these links:

Texas Big Game Awards - <https://www.texasbiggameawards.org/official-scorers/>

Boone and Crockett - <https://www.boone-crockett.org/official-measurer-locator>

Pope and Young - <https://pope-young.org/Find-a-Measurer>

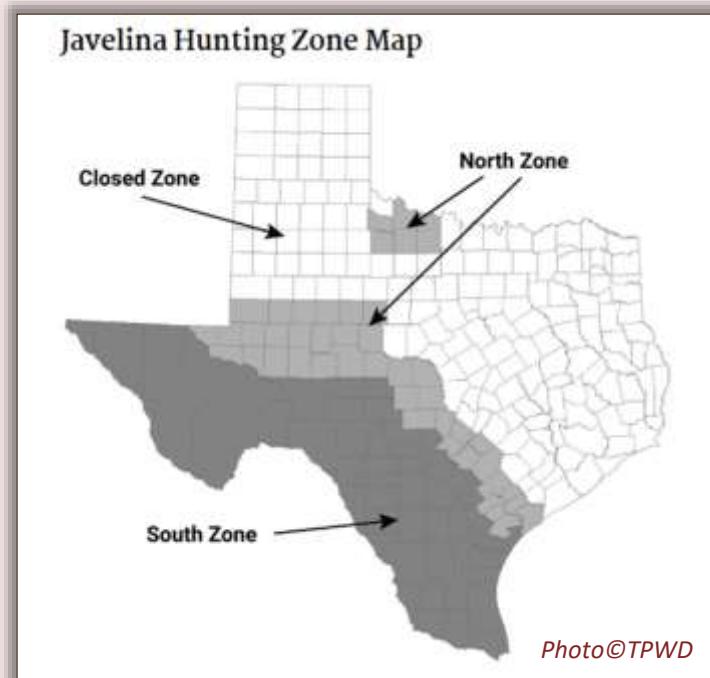
Photo ©Pope and Young Club

Hunting Javelina

Since this is the first season you can harvest a "Boone and Crockett" javelina, you may want to know more about where to hunt them. Like many other game species, javelina hunting regulations are split into two zones, North and South. Within our region, we have counties in each zone. Caldwell, Comal, DeWitt, Gonzales, Guadalupe, and Hays counties are in the North Zone with season dates October 1, 2025, through February 22, 2026. Bexar, Karnes, and Wilson counties are in the South Zone and can hunt all year, with the bag limit resetting on September 1. All other counties in the region are closed.

When harvesting javelina, it's important to remember two things. First, you have a yearly bag limit of two per license year. Second, they are a game animal, meaning you need to make every effort to harvest and utilize the meat.

Continued on page 9


Javelina: The Newest Boone and Crockett Category, continued

A Common Misconception

The javelina isn't a kind of pig, but instead is part of a separate family of ungulates called peccaries. The peccary family consists of three species in North and South America: the collared peccary, white-lipped peccary, and the Chacoan peccary.

Some key differences between feral pigs and javelina can be seen in the photos below and include:

- The shape of the ear; javelina have a rounded ear, while pigs have longer, pointed ears.
- The tail: javelina tails are short and are rarely noticed from a distance, while pigs have a long tail.
- The “collar”, javelina have a distinctive white band behind their head that gives them the name of collared peccary. While pigs can vary in color and sometimes may even have spots, they won't have this white banding.

Photos©TPWD

References:

Boone and Crockett and Pope and young clubs now accepting entries for javelina. Boone and Crockett Club. (n.d.). <https://www.boone-crockett.org/boone-and-crockett-and-pope-and-young-clubs-now-accepting-entries-javelina>

Download B&C Score Chart pdfs. Boone and Crockett Club. (n.d.-b). <https://www.boone-crockett.org/download-bc-score-charts?ref=sidebar>

JAVELINA2025-2026 Seasons & Regulations. Javelina - Texas Parks & Wildlife Department. (2013, July 29). <https://tpwd.texas.gov/regulations/outdoor-annual/regs/animals/javelina/#autotoc-item-autotoc-1>

Systems, O. B. (n.d.). Score sheets. Score Sheets. <https://pope-young.org/Score-Sheets>

Robert Conrad is the Wildlife Biologist for Gonzales County and the M.O. Neasloney Wildlife Management Area. Following his time in the Army, he earned his bachelor's and is currently working on a master's from Texas A&M. Robert started in April 2024, and offices at the M.O. Neasloney WMA.

Smaller Prairie Restoration

WRITTEN BY MARVELYN GRANGER

You may have heard the statistics about the history and loss of native prairie. Historically, Texas was estimated to have about 20 million acres of native prairie before colonization. These prairies are a vital part of the state's ecosystem, supporting a diverse array of plant and animal species, and have long sustained those who have lived there. Over time, however, much of this prairie land has been converted for agricultural, urban, and industrial development, leaving less than 1% remaining.

While the existence of protected ranch land covering thousands of acres is a cause for celebration, we are in a race to stay ahead of fragmentation caused by development and issues like divided inheritance. With the decline of large, connected acreage, what impact can these critical habitats have, even if it's just a few acres or a pocket prairie at a time? Additionally, what specific challenges do these restoration efforts face?

WHAT ARE THE CHARACTERISTICS OF A QUALITY NATIVE PRAIRIE OR A SUCCESSFUL RESTORATION?

While your specific goals will likely drive your personal success, several features are characteristic of a native prairie. A good native prairie is a highly diverse, resilient, and functioning ecosystem characterized by a variety of native plants, healthy soil, and abundant wildlife, largely free of invasive species. When you learn to recognize these attributes from a typical field or a pasture of "improved" grasses, the difference is evident even from the road at roughly the speed limit. However, let's begin by examining the differences in plants, soil, and wildlife more closely.

Plant Life

- **Diversity:** A healthy prairie has a wide variety of native plant species, including grasses, wildflowers (forbs), and sometimes shrubs and trees. There can be more than 100 plant species in a small area. To really appreciate these, we suggest walking "at the speed of botany."
- **Variety of root depths:** You have likely seen the depictions of prairie plants' root systems extending many feet below the ground's surface. These fibrous networks make the prairie drought-resistant, improve water infiltration, and build healthy soil, often described as having a texture similar to that of chocolate cake.
- **Year-round benefits:** A thriving prairie serves a continuous supply of flowers, offering a steady food source for pollinators and birds.

Soil Health

- **Rich organic matter:** Healthy prairie soils are rich with organic matter from decomposing plant roots and other material. This material supports a diverse community of microorganisms and facilitates the cycling of nutrients.
- **Excellent water retention:** The deep, fibrous root systems and organic-rich soil act like a sponge, promoting water infiltration, reducing runoff and erosion, and helping the ecosystem absorb floodwaters.

Continued on page 11

Smaller Prairie Restoration, continued

Companies like EOG Resources have worked with Texan by Nature and others to restore native habitats. They have measured a 56% increase in soil infiltration and 63% less surface runoff at the native restored sites.

- **Carbon sequestration:** Prairies are highly effective at storing atmospheric carbon in their deep soils, making them a more reliable carbon sink than forests that are vulnerable to fire and insects. The Texan by Nature restoration project has also demonstrated a 50% higher carbon sequestration rate at the non-native and native restored sites.

Wildlife Indicators

Biodiversity: The dense native plant communities of a healthy prairie provide essential food and shelter for a variety of wildlife. Native sites have shown 116% more species than non-native sites.

ARE THERE ADVANTAGES OF RESTORING SMALLER ACREAGE?

Pollinator populations: The presence of a diverse array of pollinators is a strong indicator of a healthy prairie.

Grassland birds: Ground-nesting birds such as meadowlarks demonstrate that the prairie provides suitable habitat.

Restoring smaller areas of land offers distinct advantages. The most obvious benefit is cost savings. With fewer chemicals, seeds, equipment, and less labor required, it becomes more feasible for landowners to handle much of the work themselves with limited resources.

WHAT IS THE CATCH?

Smaller areas allow for a more targeted restoration plan. With fewer variations in elevation, soil types, and historical uses, it becomes easier to identify concerns, develop a focused strategy, and implement specific techniques.

Additionally, working within a smaller area enables close monitoring of invasive species and the tracking of native biodiversity. This improved accessibility allows for quicker and more effective responses to issues, such as spot spraying invasive or non-native plants. Enhanced monitoring also provides opportunities to identify and celebrate successes, like thriving populations of pollinators and ground-nesting birds.

Owning a smaller piece of land can present challenges that larger properties might not face, such as "edge effects," limited resources, and the lack of economies of scale. With fewer acres, you will likely experience more "challenges per acre."

If you have a smaller property, the restoration efforts you undertake will be significantly influenced by the surrounding environment. Unless your neighbors are also committed to prairie restoration, you may border various situations that hinder your goals. For example, your neighbor might have an invasion of Johnson grass, which can spread seeds to your side of the fence with every gust of wind.

Additionally, a landowner growing crops may inadvertently spray chemicals that drift onto your property. If your property is surrounded by Bermuda grass in a park or a highway, these factors can impact a larger portion of your prairie compared to a much larger restoration site.

Smaller areas may also support fewer species and less biodiversity, particularly for larger wildlife that require expansive habitats. Even if you possess diverse resources, having them spread over less land means you may attract fewer animals.

Continued on page 12

Smaller Prairie Restoration, continued

For instance, it is unlikely you will see wild turkeys or quail on a five-acre property.

Finally, while you may incur lower overall expenses, your costs per acre will be higher. Hiring professionals to broadly apply herbicides or to expertly plant with a seed drill can help you use your resources more effectively. However, the trip charge remains the same regardless of the size of your property. Even if you decide to do the work yourself, purchasing or renting the necessary equipment can be expensive if you do not already own it.

CAN QUALITY CHARACTERISTICS BE ACHIEVED ON SMALLER ACREAGE?

Native prairies do a lot! Can those benefits be realized on smaller parcels of land? The answer is a resounding YES! Every effort counts and is crucial in reconnecting fragmented landscapes. Wildlife and pollinators require a diversity of native habitats, as well as continuous habitats. Unfortunately, the prairie landscape has been fragmented, and it is our responsibility to piece it back together. As these patches become smaller, we face the increasing challenges.

Even small sites can yield significant ecological value through thoughtful and prioritized planning. By using high-quality native plant mixes that are specific to your soil and locally adapted, you can enhance the establishment of a resilient and diverse prairie. Small prairies can connect with other natural areas, improving the ecological quality of the overall landscape. Restoring smaller prairies not only benefits pollinators and various bird species, but it also creates essential links between larger restoration efforts and remnant habitats.

A well-managed small prairie can showcase a variety of important features, including rich native plant communities, support for pollinators, erosion control, and recreation. These small prairies can serve as excellent examples of conservation practices, aligning closely with specific ecological goals.

FIND YOUR COMMUNITY TO BUILD CONNECTIVITY

The Fayette Prairie Chapter of the Native Prairies Association of Texas recently hosted a symposium titled "Five Tools of Prairie Restoration." This event focused on training and discussions about utilizing the five tools described by Aldo Leopold. Steve Nelle, the author of "Lessons of Leopold," emphasized the importance of a land ethic and respect for the land that is essential when committing to prairie restoration, regardless of the size of the project. Will Newman concluded the symposium by proposing a sixth tool—community—highlighting the incredible power of collaboration. Our collective commitment will help us meet the challenges of rebuilding native prairie habitats.

One of our chapter members and land stewards beautifully summarized this sentiment: "The most valuable information is the motivation from the presentations and meeting like-minded people that just encourages us to keep on going when it gets tough!" The value of education and community, such as what we offer at the Fayette Prairie Chapter, cannot be overstated. Although restoration efforts can be challenging, our chapter provides invaluable education for land stewards eager to learn about the restoration process, timing considerations, and how to identify personal goals. We invite you to join NPAT and the Fayette Prairie Chapter, as well as subscribe to our newsletter, where you will find support for your restoration and stewardship aspirations.

No matter the size of your land, you can significantly contribute to restoring tallgrass prairie. The Fayette Prairie Chapter's Smaller Acreage Restoration Program (SARP) provides crucial resources to assist members in their prairie restoration efforts.

Continued on page 13

Smaller Prairie Restoration, continued

With financial aid, technical expertise, educational opportunities, and access to equipment and chapter resources, we are dedicated to promoting effective restoration and sustainable prairie maintenance. In partnership with the Texas Parks and Wildlife Department (TPWD), SARP develops customized restoration plans tailored to each steward and their land.

**CAN QUALITY CHARACTERISTICS BE ACHIEVED
ON SMALLER ACREAGE?**

Our focus is on prairies that are under 25 acres—the typical minimum size for many other cost-sharing programs. We help cover initial costs for materials such as herbicides, and native grass and forb seeds that are specifically chosen for our ecoregion, as well as contractor support. Our restoration plans also offer guidance, access to necessary equipment, and organized workdays to aid in completing the restoration process. As more people move to rural areas and seek to care for their land, SARP plays an essential role in addressing the fragmentation of the Fayette Prairie and the surrounding Post Oak Savanna.

Small prairie restorations by Texas landowners contribute significantly to regional conservation efforts, supporting biodiversity, ecosystem health, and climate resilience—making a meaningful impact.

Every small change can make a big difference!

Learn more about NPAT: texasprairie.org

Follow our chapter and join the newsletter: <https://texasprairie.org/fayette-prairie-chapter/>

Become an NPAT member and join our chapter: <https://texasprairie.org/join/>

Learn more about SARP and consider if your project may qualify: <https://texasprairie.org/sarp/>

Contact us for sponsorship opportunities to support this important work: fayette@texasprairie.org

"Working for tomorrow's wildlife...TODAY"

TEXAS WILDLIFE

Newsmagazine of the Texas Wildlife Association

August, 1992

Volume 8 - Number 3

WHERE HAVE ALL THE COWBOYS GONE?

Charly McTee

Half of all Texans have never seen a screwworm; the other half will never forget having seen one.

It's hard to pick up a paper or magazine, or turn on the TV, without seeing something about the environment, the latest threat to it, or how much it's going to cost to "save" it. A curious thing is that these stories never, ever, mention the most effective—and cost-effective—ecological program ever undertaken within Texas. The program's a little over 30 years old now, and was started while most of today's environmental reporters were still taking their nourishment through a nipple. The program was, of course, the eradication of the screwworm. The success of the screwworm program has changed forever the Texas range, the way of life on it, and the wildlife which lives there.

For those who have not seen one, we'll risk biasing your judgment by saying that a screwworm infestation is the most horrible thing imaginable. The process is simple enough: a fly lays its eggs on an open wound in an animal—a wire scratch, antler gouge, navel sore, or even a tick bite. The eggs hatch into larvae, which then sustain themselves by feeding on the flesh around the wound—in effect, consuming their host while it is still alive. Since the wound stays open, more flies can lay their eggs, and the process goes on. As the larvae mature, they pupate, fall to the ground, and hatch out into still more flies, and the process continues until eventually the animal dies and is consumed.

Most commonly, the wounded animals

The adult screwworm fly lays her eggs on an open wound (USDA artwork)

chosen as egg-laying sites were pets, livestock or wildlife—especially deer. Any animal larger than a cottontail rabbit could support screwworms long enough for the larvae to mature. As additional evidence that flies don't discriminate, however, news reports a couple of years ago told of a soldier returning from Panama with screwworms in a head wound. Records from the Texas frontier tell of many human deaths from screwworms, when the fly would lay its eggs

in the nostril of a sick person, or someone asleep in the shade. The resulting infestation was often rapidly and painfully fatal. The last recorded human death from screwworms in Texas was in 1972, of an invalid from south of San Antonio, infected under similar circumstances.

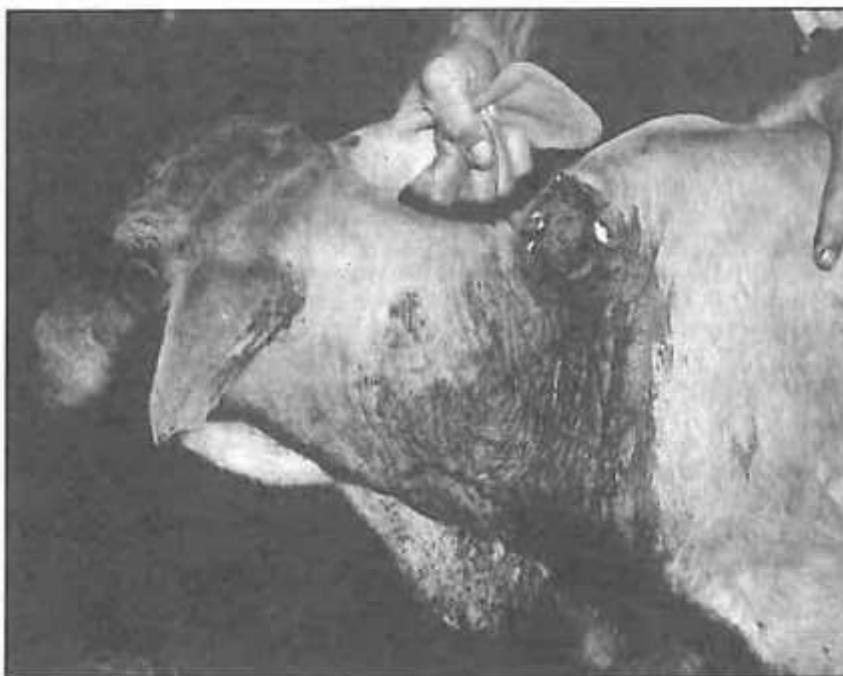
The possibility of screwworm infestations in livestock put special requirements on ranchers, who had to visually inspect every

See SCREWWORM on Page 5

Continued on page 15

SCREWWORM Cont. from Page 1

single head of stock on the ranch at least twice a week during fly season. Harvey Goff, the dean of guides at the YO Ranch, says, "When we had to check stock for screwworms all the time, there were a lot of real good horses in this country, and cowboys to ride them, too. We rode a lot, and many of us used trained dogs, especially in the sheep and goat country. I had a dog who could smell an infected goat from 100 yards away when the wind was right."


Uvalde rancher, banker, former Governor, and TWA Director Dolph Briscoe, Jr. was exposed to the problem early. As he says, "When I came back from the Army, and my dad turned our sheep and goat operation over to me, I was right in the middle of the screwworm problem. Sheep and goats were worse risks for flies than cattle anyhow, and we sure had a lot of them to rope and treat. We used to work a pasture every morning while it was cool, separate out the 'wormies', doctor them in the middle of the day, and repeat the process in another pasture that afternoon."

Briscoe went on, "In the hot months, the goats would eat a lot of prickly pear apples, and get sores on their chins from the thorns. The screwworm flies would then lay their eggs in the sores, and we had another goat to treat." He reflects, "You can't find wormy goats from a helicopter, either."

Rainy years were also great years for screwworm flies. According to Dr. O.H. Graham, during the summer of 1957 after the drouth of the 1950s broke, the Callaghan ranch near Encinal had 1900 head of worm-infested stock at one time in their "hospital trap." That year, the Callaghan was using one cowboy per pasture, riding 6 days a week, to check for screwworms in livestock.

Multiply these efforts by the hundreds of ranches in Texas, and the amount of daily work needed to keep the screwworms under control is much easier to understand. Farms likewise were not immune, because almost every farm had a few milk cows. An especially vivid experience of my own farm childhood was helping my dad treat a screwworm infestation on a milk cow. The wound, behind the cow's ear, was small, but the sheer number of worms writhing and twisting deep inside it was staggering. Again, it is a sight which can't be forgotten.

Screwworm infestations in wildlife helped to keep the fly population high and wildlife populations low. Deer were obviously impossible to check, catch, and treat as pets and livestock were, so that the wildlife popula-

Screwworm infestation in a calf. Note the white egg masses at the edges of the wound.
(USDA photo)

tion served as a constant source of flies for continuing the infection. Most screwworms which actually matured were believed to have done so in wildlife hosts, sustaining the outbreaks.

Does and fawns were especially susceptible, since fawns were dropped during fly season; but any fence cut or antler wound during fly time meant certain but slow death for the wounded animal. Deer populations were thus sharply limited by the screwworm fly. Estimates range between 25 and 100 percent loss of fawns to screwworms, depending on the area and how bad the flies were that year. Common points of screwworm fly attack were the fawn's navel, and under the tail of the doe.

Fly season annually began in the earliest part of spring as the weather warmed, and the flies began moving north from the Rio Grande, sometimes to surprising distances. An 1825 U.S. Army report from Fort Atkinson, Nebraska—near the present site of Omaha—describes a screwworm infestation of the Army's horse herd there. The rate of movement was surprisingly rapid; researcher Billy Hightower released marked sterile flies, and trapped one of them 11 days later 180 miles from the point of release.

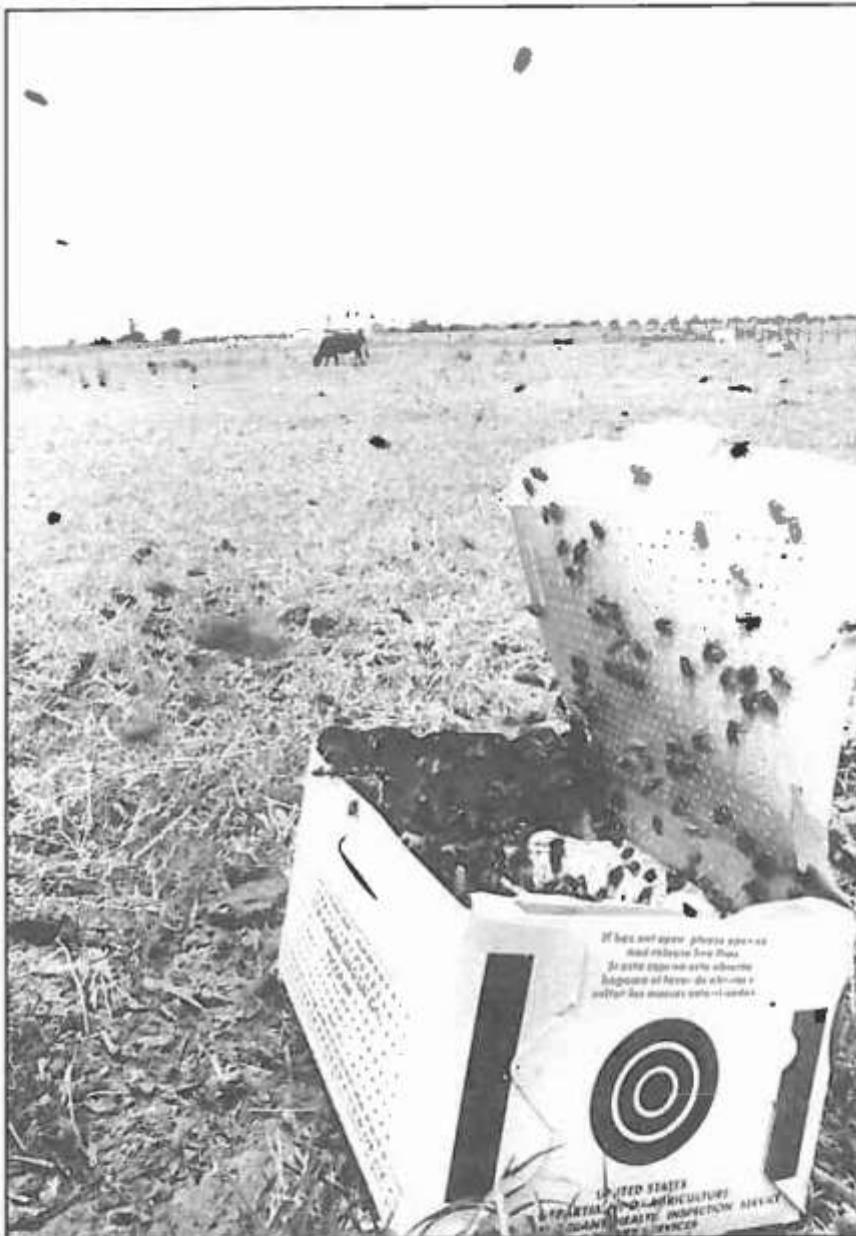
The screwworm danger continued through the warm days of spring, summer, and fall, until winter frosts killed off the adult flies; but the next spring brought a reinfestation and the same long hours of checking and

treatment once again. Pupae could live only 60 days; if it was then too cold to hatch, the pupa simply died. Dr. Graham estimates the northward line for overwintering survival of the screwworm fly pupae at about Highway 90, with about half the pupae surviving the winter below that line. Joe Finley, Jr., of the Callaghan ranch north of Laredo, told Dr. Graham that there were nearly always a few screwworms even in wintertime on the ranch. Further south, around Hebbronville in Jim Hogg County, cases of worms were more common year-round. Rains and wet years intensified the fly problem.

Since it was a major and formidable agricultural pest, naturally a great many research hours and dollars were spent on the investigation of the screwworm, in both the larvae and the adult fly stage. Much of the early work, in 1937-39, was done at the USDA laboratory in Menard, TX, where Dr. R.C. Bushland had developed a technique for artificially raising screwworm flies, for the initial purpose of testing medications. Dr. E.F. Kibling, also stationed at Menard, had noticed that there seemed to be relatively few screwworm flies in nature. Another curious observation was that the female screwworm fly, the egg-layer, seemed to breed only once. Winter, of course brought cold temperatures that killed off the wild flies.

The twin peculiarities of not being able to
See **SCREWWORM** on Page 9

SCREWWORM Cont. from Page 5


stand the cold, and of breeding only once, were the seeds of an idea. If the female bred with a sterile male, then the eggs would not hatch, and there would be no larval infestation. The effort would require millions of dollars and hundreds of thousands of hours to spread sterile male flies over millions of acres of farm and ranch land. Where and how would you get billions of sterile screwworm flies, not to mention the money? Even from a perspective of nearly 40 years later, the idea still seems crackpot, more like the ravings of a bunch of mad scientists. Some have described this insight of Dr. Knibbling's as "the most innovative idea in entomology in the last 100 years."

World War II intervened, taking Bushland and Knibbling from Menard to other jobs elsewhere; but it also introduced atomic radiation to the public at large. After the war, Dr. A.W. Lindquist happened across a scientific paper which described radiation producing sterility in flies. This news excited Drs. Knibbling and Bushland, and reminded them of their pre-war ideas. Now relocated to a new laboratory at Kerrville, TX, Dr. Bushland began a series of experiments to validate the concept of using sterile flies to exterminate a wild population. With borrowed time on an X-ray machine at Brooke Army Hospital, Fort Sam Houston, he found that radiation dosages of 5,000 Roentgens or more would sterilize screwworm fly pupae, and that sterile flies could successfully mate with wild flies.

Preliminary testing on Sanibel Island, off the coast of Florida, indicated that the sterile fly technique would work in the field. A later full-scale test, in cooperation with the Dutch government, on the island of Curacao, was successful in completely eradicating the screwworm fly in 14 months of full-strength fly drops (400 flies per square mile.) The Florida Cattlemen's Association then supported an eradication program on the Florida peninsula, where screwworms accidentally introduced from Texas in the 1930s were costing cattlemen over \$20 million per year.

With a full-scale fly-release program, the screwworm threat in Florida and the Southeastern states was reduced to essentially zero in just two years. A quarantine line was established along the Mississippi to keep Southwestern cattle from bringing a fresh infestation to the Southeast.

Texas events of 1961-62 show plainly how serious a pest the screwworm fly really was to farmers and ranchers. Recognizing that any eradication effort would have to be

Sterile flies in boxes were air dropped to cover areas threatened by the fly.

(Dr. M.E. Meadows photo)

pushed from the producer level, ranchers organized the Southwest Animal Health Research Foundation. Committees were organized in every county of the state to be the local voice of the screwworm program and, more importantly, to raise funds.

The first important money, over \$3,000,000 in 1961 dollars, was gathered in voluntary contributions from Texas farmers and ranchers: 50 cents for a cow or horse, 10 cents per sheep, goat, or pig. The Sportsman's Clubs of Texas, under the leadership of Harry Jersig, was instrumental in raising money from sportsmen's groups to support the new and revolutionary program. The late Garner

Fuller, at that time employed as a wildlife biologist by Jersig's Lone Star Brewing Company (and later TWA Secretary), was also a key participant in early fund-raising efforts. Over \$1.5 million was raised in the first 60 days of solicitations.

Governor Briscoe says, "Dr. R.C. Bushland was the real key person in this effort. 'Bush' went all over the state to the meetings of county committees, really selling 'pie in the sky.' The experts at USDA said the screwworm program, although it had been successful in Florida, could never work in Texas because of the constant reinfestation

See SCREWWORM on Page 10

A delegation of Texas cattlemen visit the screwworm plant in Sebring, Florida, March, 1959. From left: Dr. M.E. "Cotton" Meadows, Director of the Screwworm Eradication Program; Norman Moser, President TSCRA; Dr. C.L. Campbell, State Veterinarian of Florida; Dolph Briscoe, Jr., TSCRA, and Leo J. Welder, TSCRA. (Dr. M.E. Meadows photo)

SCREWWORM Cont. from Page 9

by flies from Mexico. Bush was just so persuasive in the meetings that he really got the livestock producers to bet on the technique."

The fate of the program at this early stage was totally dependent on the ability of a scientist like Dr. Bushland to explain a complicated process in simple terms which laymen could readily understand, and he did a magnificent job of this. Not every rancher was convinced; Dr. Graham tells of one hard-bitten old rancher in the Hill Country who said, "Not no, but hell, no! I'm not putting any of my money into any such crackpot scheme; but I'll tell you what. If this crazy idea does work, I'll give you *double* next year." The following year, the Foundation received his check for exactly twice the amount originally requested.

Lt. Gov. Preston Smith, later to be Governor of Texas, appointed a committee of the 1963 Texas Senate to deal with the need for funds, while Byron Tunnell, Speaker of the

House, named a similar committee of House members. The first Federal money for the screwworm program was arranged by Lyndon B. Johnson, at the time Vice President, who was successful in getting a \$200,000 appropriation through the Senate as the first Washington contribution.

Johnson, after succeeding to the Presidency, insured the continuance of the screwworm program with instructions to the USDA to quit saying "It won't work in Texas," and to *make* it work. Federal support was said to be much more evident after this instruction.

With \$650,000 of the first producer contributions, a plant was built in Mission, in far South Texas, for the sole purpose of raising and sterilizing screwworm flies. (Brown and Root constructed the plant in six months for just \$1 over costs!) Locating the plant in the Rio Grande valley took advantage of the annual spread of the flies north from Mexico in the spring. By concentrating on preventing fly reproduction in a wide band along the

Rio Grande, the flies could be kept from ever advancing to Central and North Texas.

To raise the tens of billions of flies necessary, workers seeded trays of ground meat with fly eggs. The earliest attempt at mass raising of screwworms, during the Florida effort, used ground horsemeat; when that became too expensive, a changeover was made to whale meat. The Mission plant began operations with whale meat, later changing to the meat of nutria—an aquatic rodent similar to the beaver. A still-later advance used a customized hydroponic mixture, whose major component was blood, to culture the flies. (The plant must have been an awful place to work for anyone with a sense of smell, although Dr. Meadows says, "You got used to it." Gov. Smith says, "Nothing ever stunk so bad as the Mission fly plant.")

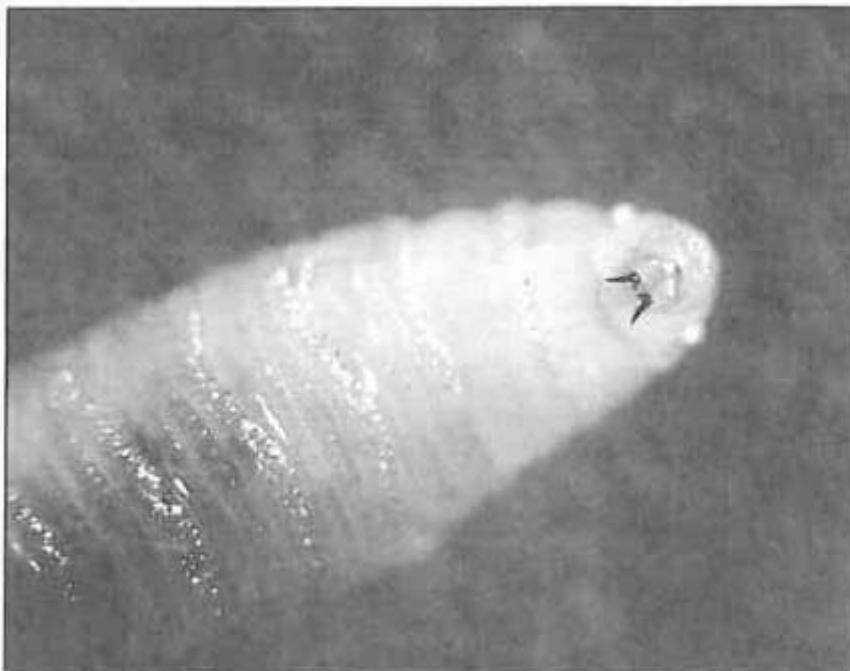
The flies, 200 million of them a week, were then sterilized by radiation, placed into cardboard boxes which held as many as 2,000

See SCREWWORM on Next Page

SCREWWORM Cont. from Page 10

flies, and air-dropped to systematically cover Texas and Northern Mexico. Dr. Bushland says that screwworm drop aircraft were allowed much freer access to Mexican airspace than those of any previous operation.

Empty fly boxes were a common sight on Texas ranges. On one occasion, I saw an aircraft dropping flies over our Webb County deer lease. Every half mile or so, another box would be ejected from the rear of the plane, tumbling down to the brushland below with its cargo of sterile flies. Scientists had found that the sterile flies, although not so strong as those raised in the wild, were still capable of breeding with the wild females. Sterilized flies also lived a slightly shorter time—13-14 days, compared to 16 days for a wild fly.


Special drops were made in areas with heavy screwworm infestation, or where worms were found in new areas. Pure statistics then took over; with hundreds of thousands of sterile flies in the area, the mathematical probability was very high that the wild breeding female would become romantically involved with a sterile fly, thus laying infertile eggs which could not hatch into screwworm larvae.

For years the captive breeding, sterilization, and dropping of flies over Texas and northern Mexico continued, and the rate of screwworm infestations drastically declined. Special drops continued to effectively target outbreaks, and the problem declined until in 1976 the Mission plant was closed. A new facility, with a capacity of 500 million flies per week, has now been opened further south in Tuxtla Gutierrez, Chiapas, Mexico.

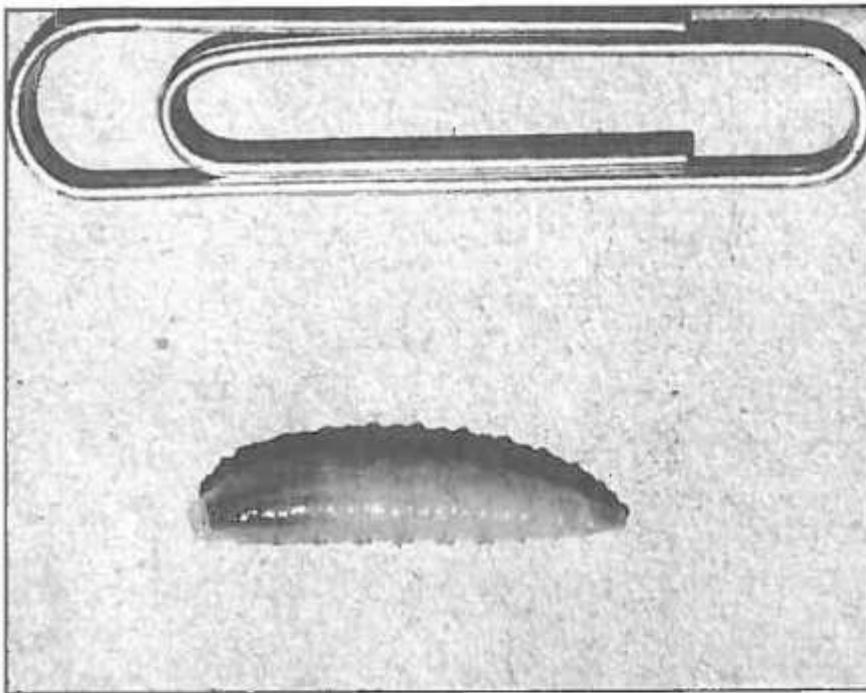
Operations continued there, and finally in February, 1991, it was announced that Mexico as well as the U.S. was screwworm-free. The announcement may have been slightly premature; approximately 50 cases of screwworms have been reported from Mexico in 1992. These are being treated just as earlier instances in Texas were: with immediate high-density drops of sterile flies. Dr. O.B. Oliver, currently at the USDA Mission facility, says that the majority of the fly samples currently received for identification at the Mission office are of fly species other than the screwworm.

The focus of present activities is shifting even further south in Central America, with a new fly plant scheduled to open in Panama in 1996, once the fly has been eradicated north of there.

Annual savings to U.S. livestock producers are estimated at \$400 million, with ex-

The screwworm larva, larger than life size (USDA photo)

A worker holds one of the trays in which the larvae were produced. (USDA photo)


pected total benefits to the U.S. and Mexico over \$3 billion. No mere total on a cash register tape can ever accurately reflect the savings in suffering by the animals who were involuntary screwworm hosts, nor the hard, long work to treat and reduce that suffering.

The disappearance of the screwworm fly took away the necessity for twice-a-week looks at all livestock, as well as the need for

many of the horses, dogs, and cowboys who had to do the looking. A breeder of quarter-horses told Dr. Bushland, "The success of your screwworm program has ruined my business. People just don't need as many head of horses anymore."

As a result of the lessened need for ranch hands to work livestock, the rural face of

See SCREWWORM on Page 12

Screwworm larva, next to a paper clip to show size. The larva's mouth is at the pointed end. (USDA photo)

SCREWWORM Cont. from Page 11

Texas began to change permanently, as fewer people made their livings in the rangelands. Deer populations exploded; TWA's David Langford says, "There was a dramatic change on the Esperanza Ranch in La Salle county. In 1958, we used to hunt all day and rarely see a deer. Just south of the house, there was a 2,000 acre barley field, and you'd never see more than a few deer on it. Then in 1965 when I came back to the Esperanza, there

were deer everywhere, and you could see hundreds of deer in that same barley field."

These high deer populations were one result of reduced losses to screwworms, and introduced the problem of wildlife management to Texas landowners. Prior to the elimination of screwworm predation, there was no need to worry about keeping the wildlife population down to carrying capacity. Screwworms often eliminated nearly all fawns, and many of the does which gave

birth to them. San Antonian Bill Scheidt, who hunted near Carrizo Springs in the 1920s, says, "We would hunt for a week, and maybe see only one or two deer. They would probably be pretty good ones, but there just weren't many deer."

Environmental groups and television programs tend to get all teary-eyed about wolves, lions, and other predators, but the most important predator in the long history of Texas wildlife was the ugly, hungry offspring of the screwworm fly. The elimination of the fly went unnoticed by most Texas residents, but was noted by relief by thousands of the rest. As David Langford says, "Just think about how it would be if the screwworms came back—what a change it would make in our lives." The change of lifestyle might be more substantial than we think; Dr. Bushland says that all of the medicines and smears formerly used to treat screwworms would be illegal under present-day EPA regulations.

The present situation, without the constant threat of screwworm infection to keep landowners alert and on guard, is labeled as "a potential time bomb" by some of the former researchers, now retired. With the prevalence of non-resident landowners, and today's weekend farmers/ranchers, a screwworm-infested animal could easily go undetected for weeks or until after death—time enough to hatch thousands of deadly flies. With the Mission plant now closed, Federal and state funding for screwworm detection/treatment at zero levels, and even formerly-used medicines now unavailable, a return of screwworms could be a full-fledged disaster. Dr. Graham says flatly, "South of Highway 90, ranching as we now know it would be impossible if screwworms came back." Livestock and wildlife professionals must be constantly alert to any sign of fly danger, and notify their county agents and livestock producer groups immediately.

Unfortunately, the demise of the screwworm now seems to be only a minor bit of history, forgotten and neglected by the people who produce television shows, and write for newspapers and magazines. The screwworm program, however, continues to serve as a model for effective international cooperation between producers and governments, and remains as the single most effective ecological program ever undertaken in Texas. Without the energy and contributions of Texas livestock producers and sportsmen, however, there would never have been a screwworm program, and Texas today would

See SCREWWORM on Page 14

an authoritative presentation of the history of the program.

Dr. Meadows helped immeasurably with photos, pamphlets, and clippings from his collection, as well as his remembrances of the screwworm campaigns in Florida, Texas, and Mexico.

A valuable later publication, detailing more specifically the scientific aspects of the program, is *Proceedings of a Symposium on Eradication of the Screwworm from the United States and Mexico*, O.H. Graham, Editor, published by the Entomological Society of America as Publication MPEAAL 62:1-68(1985).

The illustrations in this article were provided by the USDA, courtesy of Dr. Obie Oliver, and by Dr. M.E. Meadows.

better axis.

Sensing no danger, they fanned out and approached the lake, and my blind. I prayed for them to hurry, as darkness crept closer and I knew my ride would arrive soon.

As I watched through the glass, I kept seeing what appeared to be two extra points behind the brow tines of the great buck. As he slowly came closer, it became too dark to see without the binoculars. I heard the truck, and looked back for my deer, but the flat was empty.

So went opening day of the 1992 spring turkey season. My father and I, along with some of my clients, hunted on Lawrence and Nell Marshall's Carta Valley Wildlife Ranch between Rocksprings and Del Rio. The Marshalls manage 12,000 acres under high fence for trophy whitetail, world-class exotics and some of the best turkey hunting one can find.

Driving through the front gate and seeing the rock-and-log lodge atop the highest hill, surrounded by deep, cedar-choked canyons and draws, reminded me this is a special place. I had worked with the Marshalls 10 years, and familiarized myself with the place's history.

Most of the trophy animals here were born on this ranch. But I thought some, including maybe my dream axis, existed without ever being seen by humans. For example, in 1989, a hunter killed a tremendous 23-point non-typical whitetail, scoring 183+. No one had seen this deer before. We tried to age him, but the only things left in his mouth

Rocky Cooper and the Carta Valley Giant
were pieces of teeth.

Back at the lodge that night, I told the ranch's head guide, Ernie Berton, about the big axis. He had seen the big, white-horned buck, but not the one I was after.

We decided to concentrate on the general area in hopes he might return. We saw many other big axis during the next four days, with the hunters taking some fine trophies, up to 34 1/2 inches.

I had to leave Wednesday for Houston, but planned to return the following Sunday to meet the next group of hunters.

Sunday came, and I returned with Dian's words running through my mind, "If you see him again, don't miss!"

I tried not to think about him. I told myself it would be difficult to overcome such a missed opportunity. Too many times, newcomers pass up a great trophy the first morning never to see him or his equal again.

Sunday evening produced some promising young bucks and one, very good one right at dark, but not the GIANT. More of the same Monday morning. Monday evening Ernie and I stayed at the lodge with the truck, planning to check the blinds if we heard shots from any of the hunters.

We sat in the yellow truck next to the lodge, talking, 30 minutes before dark. "Look at that," said Ernie suddenly.

Walking along the hill opposite the lodge, on the other side of the ranch from where I first saw him, was guess who, and his five buddies. As the roar of my .340 echoed

entire pasture over a five- or six-year period. He can do a portion each year, and by the sixth year, the time will have come to return to the original section.

Throughout, this rancher should always leave fairly wide strips of brush standing adjacent to the "chopped country," providing cover for deer and other species. Such a program keeps brush in various heights. From a production standpoint, it does no good to have blackbrush, guajillo, granjeno and other brush species more than six feet tall. Unless you are running giraffes, animals cannot reach the most nutritious growth.

Rearing screwworms by the billions took lots of space and labor. (USDA photo)

SCREWWORM Cont. from Page 12

be a different place.

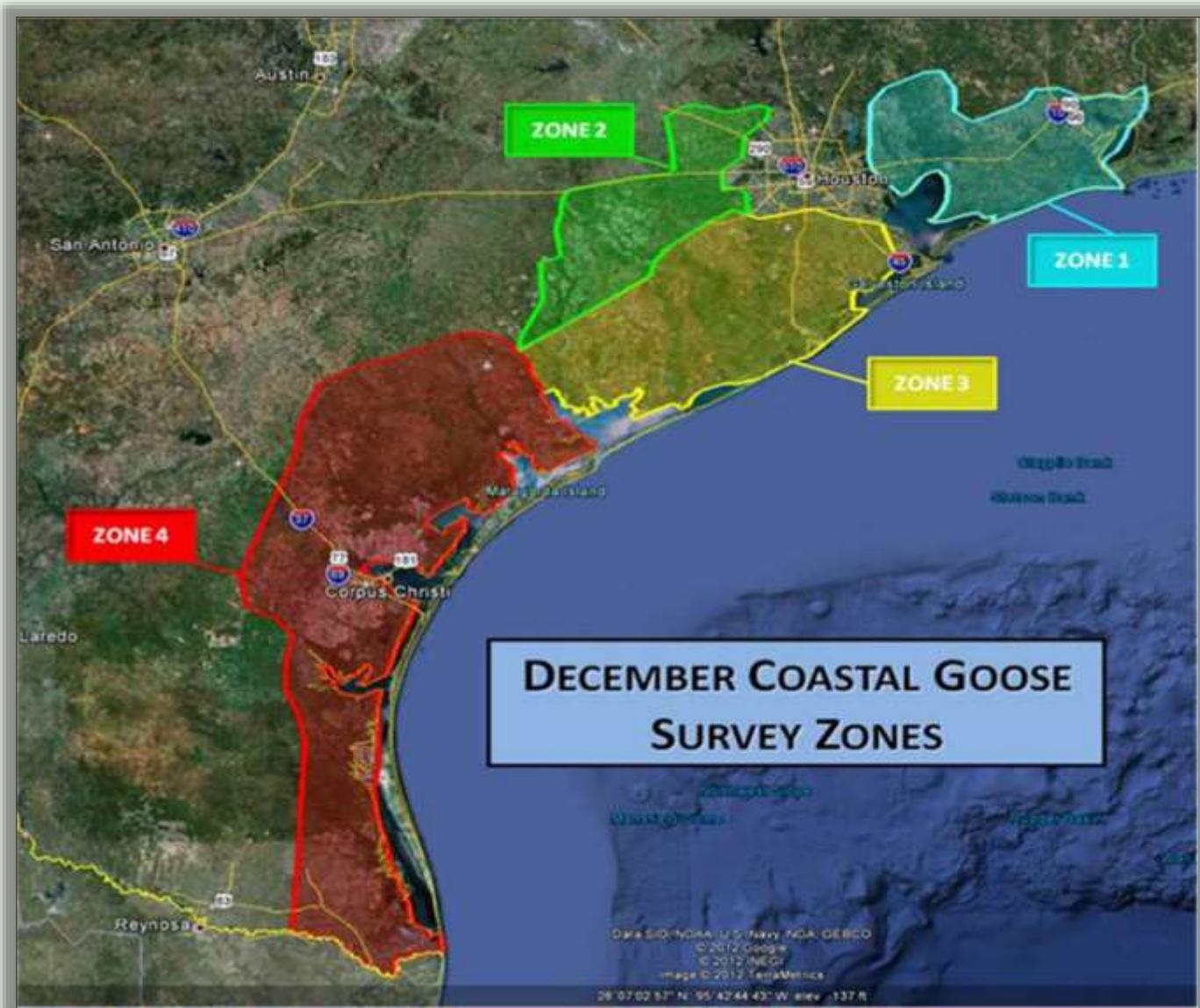
Someday, we may be able to say the screwworm is gone from Mexico; and, in some future year, from all of Central America. When the screwworm is finally gone, it is not likely to be forgotten; but neither will it be missed.

TWA Mission

Serving Texas wildlife and its habitat, while protecting property rights, hunting heritage, and the conservation efforts of those who value and steward wildlife resources.

Article credit to Texas Wildlife Association: The Texas Wildlife Association (TWA) is a statewide membership organization that serves Texas wildlife and its habitat, while protecting property rights, hunting heritage, and the conservation efforts of those who value and steward wildlife resources. To learn more or join TWA click here <https://www.texas-wildlife.org/>.

Texas Coastal Goose Survey Summary - January 2026


WRITTEN BY KEVIN KRAAI

The Annual Texas Coastal Goose Survey was flown by Texas Parks and Wildlife Department staff on January 5–6.

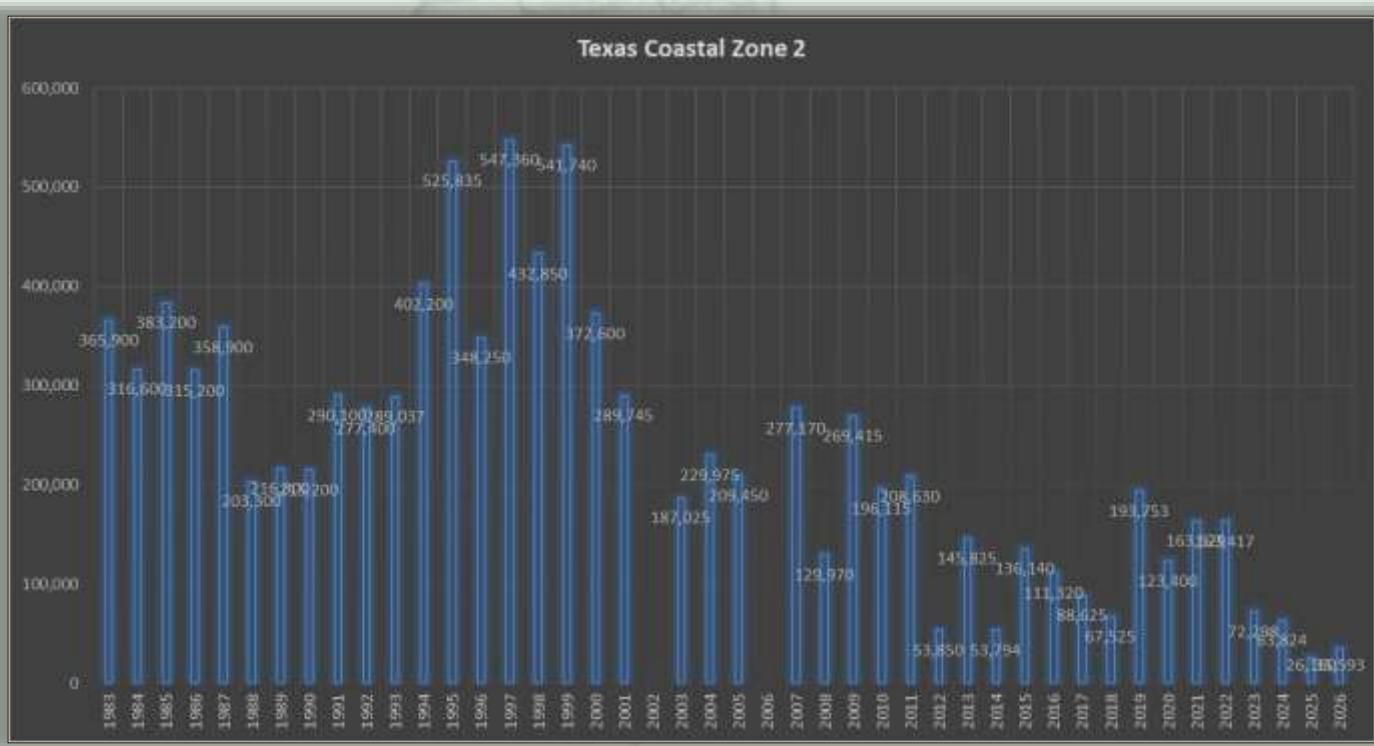
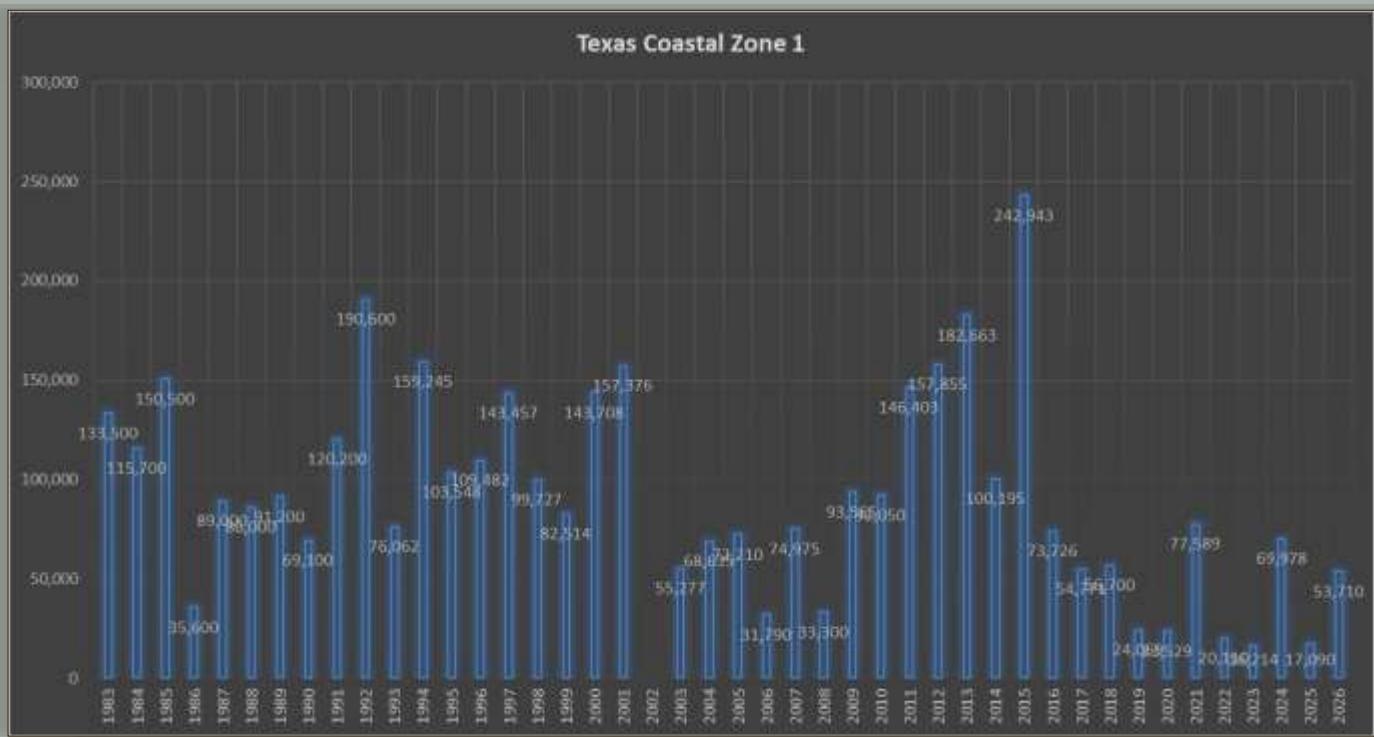
This year's survey produced an estimate of 152,952 light geese, representing a 24% increase from last year's estimate of 123,764. Despite this increase, the estimate ranks as the third-lowest all-time for light geese on the Texas Coast. Increases in light geese were observed in Zones 1 and 2, while all other zones experienced declines.

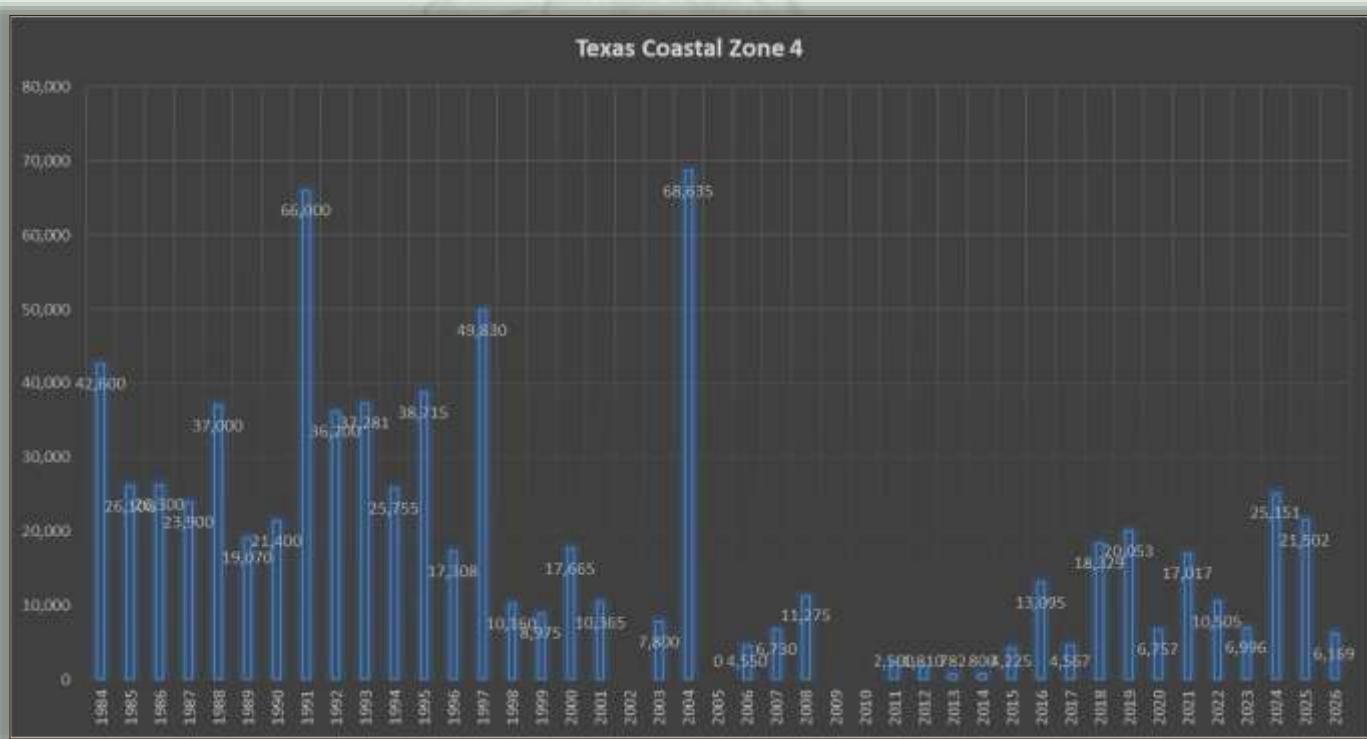
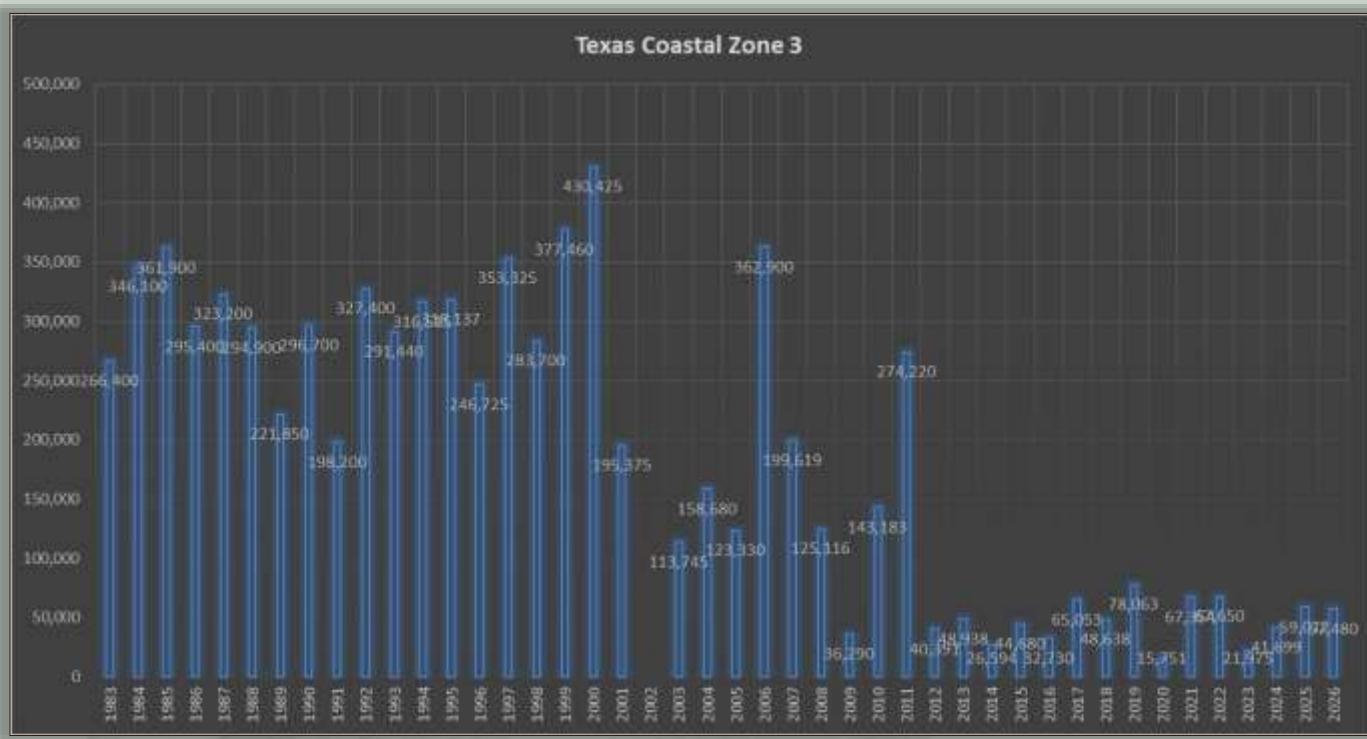
An estimated 2,125 greater white-fronted geese were recorded, a 94% decline from the most recent 25-year average and the lowest estimate in the 78-year history of the survey.

No cackling geese were detected on the survey for the ninth consecutive year.

Continued on page 22

Texas Coastal Goose Survey Summary-January 2026, continued



Coastal Goose Survey-2026							
	LSGO	% change	GWFG	% change	CAGO	Zone Total	% change
Zone 1	53,710	214%	360	177%	0	54,070	214%
Zone 2	35,593	36%	794	-67%	0	36,387	27%
Zone 3	57,480	-3%	971	-77%	0	58,451	-7%
Zone 4	6,169	-71%	0	-100%	0	6,169	-71%
Total	152,952	24%	2,125	-68%	0	155,077	19%



LSGO-Lesser Snow Goose; GWFG-Greater White-fronted Goose; CAGO-Canada Goose

Long Term Coastal Texas Light Goose Estimates

Continued on page 23

*Texas Coastal Goose Survey Summary-January 2026, continued**Continued on page 24*

Texas Coastal Goose Survey Summary-January 2026, continued

TEXAS
PARKS &
WILDLIFE

Washington County Wildlife Valuation Workshop

Washington County
Wildlife Society

FEBRUARY 27, 2026

9:00 a.m. - 4:00 p.m.

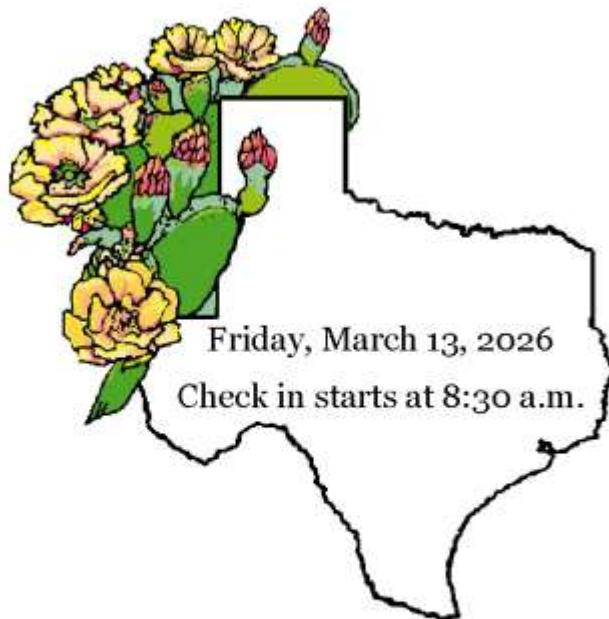
Blinn Rankin Ag Complex

1409 Old Mill Creek Rd., Brenham, TX 77833

\$25.00 per person with a catered lunch and refreshments

Topics Include:

- Washington County Appraisal District
- Introduction to Wildlife Valuation
- White-tailed Deer Management
- Texas Turkey Talk
- Avian Ecology and Identification
- Native Pollinator Valuation and Management
- Brush Control
- Native Plant Society


Registration deadline February 24, 2026

For more information, call 979-277-6297

TO REGISTER: Scan the QR code

OR Mail registration fee, payable to WCWS, to:
1305 E. Blue Bell Rd., Brenham, TX 77833

Friday, March 13, 2026

Check in starts at 8:30 a.m.

5th Annual Crossroads Wildlife Tax Valuation Workshop

Friar Ag Center
501 Martin Luther King Drive
Cuero, TX 77954

Are you interested in learning about the wildlife management option for tax valuation?

Come learn about the opportunity to manage your land for native wildlife

Information presented includes:

Wildlife Tax Valuation: History, Requirements, and Application process

Wildlife Management Practices

Your Wildlife Management Goals & Objectives

Ranch Scenarios and Example Plans

Management Plan Assistance

Workshop is Free & available to landowners in any Texas county

but RSVP is encouraged:

Call 361-576-0022

For more information contact: email skyler.hickman@tpwd.texas.gov

RANCHING & WILDLIFE EXPO

EDUCATIONAL SEMINARS

NRG CENTER ROOM 207

TUESDAY, MARCH 3, 2026: URBAN & OUTDOOR RECREATION

11:00 a.m. — Identifying and Supporting Native Butterflies (live butterflies) - Lauren Davidson, HMNS

12:00 p.m. — Break

12:15 p.m. — Backyard Native Landscaping - Mary Pearl Meuth, Texas Master Naturalist Program

12:45 p.m. — Rainwater Harvesting - John Smith, Texas A&M AgriLife Extension Service

1:15 p.m. — Bees and Pollinators: Honeybees - Lauren Ward, Texas A&M AgriLife Extension Service

1:45 p.m. — Predators in the Urban Environment – Kelly Norrid, Texas Parks & Wildlife Department

2:15 p.m. — Break

2:30 p.m. — Birding 101: Birding Basics – Liz Tidwell, Texas A&M AgriLife Extension Service

3:00 p.m. — Impact of Recreational Anglers on Marine Conservation – Pat Murray, Coastal Conservation Association

3:30 p.m. — Dog Training – Nick Stillwell, Run-n-Gun Retrievers

4:30 p.m. — Wild Game Cooking: Campfire Cooking – Craig Bowen

Scan for Additional Information

WEDNESDAY, MARCH 4, 2026: Wildlife and Diseases

11:00 a.m. — Snakes and Herps (live animals) – Drake Rangel, Texas Parks & Wildlife Department

11:40 a.m. — Break

11:50 a.m. — Scoring White-tailed Deer – Mark Lange, TPWD

12:20 p.m. — Aging White-tailed Deer: On the Hoof & Post-Harvest – Clint Faas, TPWD

12:50 p.m. — Wildlife Disease Update (CWD, New World Screwworm, Avian Influenza, etc.) – Megan Hahn, TPWD

1:20 p.m. — Threatened and Endangered Species: What They Mean for Landowners – Darren Proppe, TPWD

1:50 p.m. — Break and room setup

2:00 p.m. — Quail Ecology and Management – Jared Schlottman, Wildlife Habitat Federation & 1911 Cattle Company

2:30 p.m. — Waterfowl Ecology and Management – Taylor Abshier, Ducks Unlimited

3:00 p.m. — Turkey Ecology and Management – Jason Hardin, TPWD

3:30 p.m. — Feral Pig Management Toolbox (1 hr CEU, IPM) – Jay Long, Texas A&M Natural Resources Institute

4:30 p.m. — Wild Game Cooking: Sausage Making – Prasek's Hilljie Smokehouse

THURSDAY, MARCH 5, 2026: TAX VALUATION

11:15 a.m. — New World Screwworm – Texas & Southwestern Cattle Raisers Association

12:00 p.m. — Break

12:15 p.m. — Managing Small Acreage with Wildlife in Mind – David Riley, Plateau Land & Wildlife Management

12:45 p.m. — Brush Management in Southeast Texas (1 hr CEU) – Barron Rector, Texas A&M AgriLife Extension Service

1:45 p.m. — Native Prairie Restoration: A Landowner's Perspective – Mavelyn Granger, Native Prairie Association

2:30 p.m. — Break

2:45 p.m. — Prescribed Fire & Prescribed Burn Assoc. – Mark Brown, Fayette Prairie Prescribed Burn Association

3:30 p.m. — Funding Opportunities for Landowners – Will Newman, TPWD

4:15 p.m. — Texas Rural Land Markets & Ranch Financing Update – Joe Patterson, Pinnacle Bank

4:30 p.m. — Wild Game Cooking: Soups & Stews – Brennan's of Houston

Upcoming Events

JANUARY

23 Washington County Wildlife Society Meeting
Washington County Expo Event Center
1305 E. Blue Bell Rd., Brenham, TX 77833
Begins at 5:30 p.m.
Contact Stephanie Damron at 979-277-6297 or
Stephanie.damron@tpwd.texas.gov

FEBRUARY

6 Lee County Wildlife Association Annual Meeting
The Silos on 77 S
1031 CR 233, Giddings, TX 78942
Doors open at 5:00 p.m., dinner 6:30,
live auction 7:30
Contact Greg Sherrod at 512-431-3558
<https://leecountywildlife.org>

20 Roots and Range: Stewarding Working Lands of the Coastal Prairie
Indiangrass Preserve
31975 Hebert Rd., Waller TX 77484
Begins at 9:00 a.m. to 3:00 p.m.
Register using the QR code

21 Central DeWitt County WMA Big Buck Contest
934 US-183, Cuero, TX 77954
Begins at 5:00 p.m.
Contact Karen Flip at 361-275-4502
Cdcwma@gmail.com

21 Western DeWitt County WMA Banquet
5D Steakhouse
632 W Main St., Yorktown, TX 78164
Begins at 5:00 p.m.
Contact Kim Gaus at 361-243-8696

27 Washington County Wildlife Valuation Workshop
Blinn Rankin Agriculture Complex
1409 Old Mill Creek, Brenham, TX 77833
Begins at 9:00 a.m. to 4:00 p.m.
Contact Stephanie Damron at 979-277-6297
Stephanie.damron@tpwd.texas.gov

Photo ©TPWD

Continued on page 28

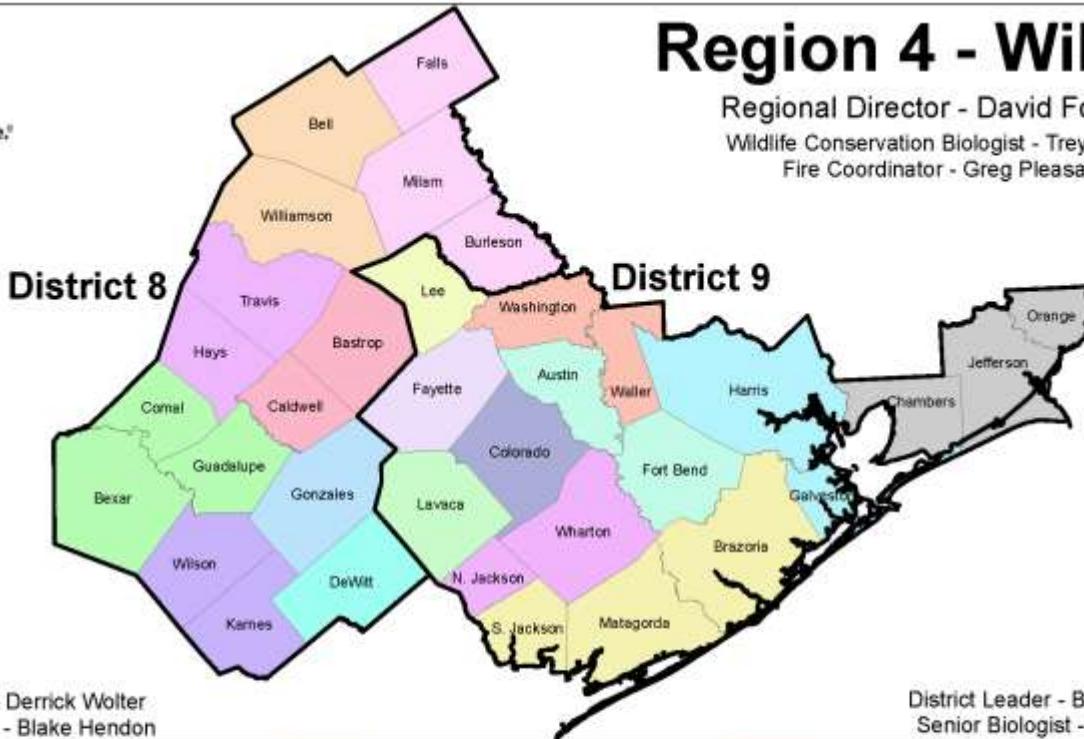
*Upcoming Events, continued***MARCH**

2-7	Ranching and Wildlife Expo and Seminars Houston Livestock Show and Rodeo NRG Center, 1 NRG Park, Houston, TX 77054 Contact Clint Faas at 832-595-8999 clinton.faas@tpwd.texas.gov	14	East Navidad WMA Spring Meeting Dubina Hall Begins 6:00 p.m. Contact Tommy Koenig at tomwko@aol.com
6	CKWRI Deer Research Meeting Witte Museum 3801 Broadway, San Antonio, TX 78209 Begins at 10:00 a.m. to 2:00 p.m. Contact Gina Cavazos at 361-593-4311 or gina.cavazos@tamuk.edu	14	Colorado County WMA Spring Banquet Columbus Hall 3845 I-10, Columbus, TX 78934 Doors open at 4:00 p.m. Contact Katie Edwards at 979-732-3458 or catherine.edwards@tpwd.texas.gov ***Raffle tickets are for sale now, only 1,500 will be sold! Contact Katie for more info***
13	Crossroads Wildlife Tax Valuation Workshop Friar Ag Center 501 Martin Luther King Dr., Cuero, TX 77954 Begins at 8:30 a.m. Contact Skyler Hickman at 361-772-3287 Skyler.hickman@tpwd.texas.gov		

APRIL

10	Wildlife Tax Valuation Workshop Colorado County EMS Building 305 Radio Ln. #101, Columbus, TX 78934 Begins at 9:00 a.m. to 1:00 p.m. Contact Katie Edwards at 979-732-3458 or catherine.edwards@tpwd.texas.gov RSVP is required, no fee.	10	Prescribed Burn Workshop Neasloney WMA 20700 SH 80 N., Gonzales, TX 78629 Begins at 8:30 a.m. to 4:00 p.m. RSVP required, no fee Contact Robert Conrad at 830-203-0896 robert.conrad@tpwd.texas.gov
----	---	----	--

MAY


2	North Central Fayette County WMA Spring Meeting Roundtop Rifle Hall Begins at 4:00 p.m. Contact Lana Limmer at Lanabs56@hotmail.com
---	--

Our Wildlife Biologists

Click on the map for your biologists contact information

Life's better outside.™

District 8

District Leader - Derrick Wolter
Senior Biologist - Blake Hendon

District 9

District Leader - Bobby Eichler
Senior Biologist - Mark Lange

Audrey Naughton (Karnes, Wilson)	Katie Edwards (Colorado)	Skyler Hickman (DeWitt)
Brent Pierce (Lavaca)	Laura Sherrod (Lee)	Stephanie Damron (Waller, Washington)
Brittany Perry (Burleson, Falls, Milam)	Matthew Johnson (Austin, Fort Bend)	Tania Pena (Hays, Travis)
Clinton Faas (N. Jackson, Wharton)	Olivia Kost (Bexar, Comal, Guadalupe)	Todd Pilcik (Brazoria, S. Jackson, Matagorda)
Cullom Simpson (Bell, Williamson)	Rachel Patterson (Bastrop, Caldwell)	District 9 Staff (Chambers, Jefferson, Orange)
Drake Rangel (Fayette)	Robert Conrad (Gonzales, MONWMA)	Urban - Addison Gaines & Kelly Norrid (Harris)

Click on the map for your biologists contact information

Executive Director
David Yoskowitz, Ph.D

Editors
David Forrester
Bobby Eichler
Mark Lange
Stephanie Damron

Life's better outside.™

COMMISSION

Paul L. Foster-Chairman
El Paso
Oliver J. Bell, Vice-Chairman
Cleveland
Wm. Leslie Doggett-Houston
Anna B. Galo-Laredo
John A. McCall, Jr., O.D.-Grapeland
Robert L. "Bobby" Patton, Jr.-
Fort Worth
Travis B. "Blake" Rowling-Dallas
Dick Scott-Wimberley
Timothy "Tim" Timmerman-Austin
Lee M. Bass, Chairman-Emeritus
Fort Worth
T. Dan Friedkin, Chairman-Emeritus
Houston

TEXAS PARKS AND WILDLIFE DEPARTMENT MISSION STATEMENT

"To manage and conserve the natural and cultural resources of Texas and to provide hunting, fishing and outdoor recreation opportunities for the use and enjoyment of present and future generations."

You may view this publication, as well as other newsletters created by the department, through the TPWD website. Please visit www.tpwd.texas.gov/newsletters/ for more information.

FOR MORE INFORMATION

All inquiries: Texas Parks and Wildlife Department, 4200 Smith School Rd., Austin, TX 78744, telephone (800) 792-1112 toll free, or (512) 389-4800 or visit our website for detailed information about TPWD programs:

www.tpwd.texas.gov

©2026 Texas Parks and Wildlife Department
PWD LF W7000-2068 (1/26)